

Air Quality Permitting Statement of Basis

July 12, 2006

Permit to Construct No. P-060019

Americrete Ready-Mix Concrete, Inc., G & B Redi-Mix Portable Truck Mix Concrete Batch Plant

Facility ID No. 777-00384

Prepared by:

Tracy Drouin Permit Writer
AIR QUALITY DIVISION

FINAL

Table of Contents

l.	PURPOSE	. 4
2.	FACILITY DESCRIPTION	
3.	FACILITY / AREA CLASSIFICATION	
4.	APPLICATION SCOPE	. 4
5.	PERMIT ANALYSIS	. 5
6.	PERMIT FEES	. 9
7.	PERMIT REVIEW	
8.	RECOMMENDATION	10
APPEN	NDIX A - AIRS INFORMATION	11
	VDIX B – EMISSIONS INVENTORY	
APPEN	NDIX C - MODELING REVIEW	16
A DDEN	INIV D. CORRECTIONINENCE	25

Acronyms, Units, and Chemical Nomenclatures

AACC acceptable ambient concentration for carcinogens

acfm actual cubic feet per minute

AIRS Aerometric Information Retrieval System

cy/hr cubic yard per hour

DEO Department of Environmental Quality

G & B Americrete ready-mix concrete, inc., G & B Redi-Mix portable truck mix concrete batch

plant

EI emissions inventory

EPA U.S. Environmental Protection Agency

HAPs Hazardous Air Pollutants

IDAPA a numbering designation for all administrative rules in Idaho promulgated in accordance

with the Idaho Administrative Procedures Act

lb/hr pounds per hour

lb/day pounds per day

MACT Maximum Achievable Control Technology
NAAQS National Ambient Air Quality Standards

NESHAP National Emission Standards for Hazardous Air Pollutants

NO, nitrogen oxides

NSPS New Source Performance Standards

PM particulate matter

PM₁₀ particulate matter with an aerodynamic diameter less than or equal to a nominal 10

micrometers

PSD Prevention of Significant Deterioration

PTC permit to construct

Rules Rules for the Control of Air Pollution in Idaho

SIC Standard Industrial Classification

SO₂ sulfur dioxide T/yr tons per year

VOC volatile organic compound

1. PURPOSE

The purpose for this memorandum is to satisfy the requirements of IDAPA 58.01.01.200, Rules for the Control of Air Pollution in Idaho, for issuing permits to construct.

2. FACILITY DESCRIPTION

Americrete Ready Mix Concrete, Inc., G & B Redi-Mix portable truck mix concrete batch plant (G & B) is a Stephens Thoroughbred mobile gravity transit mix plant. The components of the plant are as follows: a two-compartment cement storage silo -60/40 split, one 14 cubic yard cement batcher, a four-compartment overhead aggregate bin, and one 12 cubic yard aggregate batcher. The plant combines sand, gravel, cement, and water to produce concrete. Electricity for the plant is supplied by the local electric utility.

The point source of emissions at the facility is C & W central dust collection system (C & W CPR-6500-H) which collects dust from cement silo, cement batcher, and truck mix loading. The material collected by the central dust collect is recycled to the production due to continuing increasing cement cost. The dust collect is qualified as part of the process in accordance with EPA's November 27, 1995, letter regarding Criteria for Determining Whether Equipment is Air Pollution Control Equipment or Process Equipment. Stephens' SV 20 Vent dust collector is a point source also. It is used to collect dust from the cement batcher as an emergency back-up (i.e. if the C & W CPR-6500-H dust collector isn't working properly). Another point source at the plant is a small boiler which is used to heat water during cold weather. The boiler is not an affected facility under the New Source Performance Standards (NSPS) of 40 CFR Part 60 Subpart Dc.

3. FACILITY / AREA CLASSIFICATION

G & B is not a major facility as defined in IDAPA 58.01.01.205, nor is it a designated facility as defined in IDAPA 58.01.01.006.26. The potential to emit of any criteria air pollutant is below 100 T/yr, and potential emissions rates for HAPs are below 25 T/yr collectively, and less than 10 T/yr for any single HAP. The primary Standard Industrial Classification (SIC) code for the facility is 3273. The facility is defined as a minor facility. The AIRS classification is "B."

The facility is a portable plant and may locate anywhere in the state of Idaho except for PM₁₀ nonattainment areas.

The AIRS information provided in Appendix A defines the classification for each regulated air pollutant. This information is entered into the EPA AIRS database.

4. APPLICATION SCOPE

G & B Redi-Mix has submitted a PTC application for a new portable truck mix concrete batch plant. This permit is the facility's initial permit.

4.1 Application Chronology

May 2, 2006	DEQ received PTC application.
May 22, 2006	The PTC application was determined complete.
June 1, 2006	Public notice for opportunity to comment was published.
July 6, 2006	Draft permit sent for regional review.
July 18, 2006	Draft permit sent to facility for review.

PERMIT ANALYSIS

This section of the statement of basis describes the regulatory requirements for this PTC action:

5.1 Equipment Listing

Table 5.1 contains the equipment listing and the emissions controls.

Table 5.1 EQUIPMENT LISTING AND EMISSIONS CONTROLS **Emissions Controks**) Source Description C & W central dust collection system: Concrete batch plant Manufacturer: C & W Manufacturing Co. Inc. Manufacturer: Stephens manufacturing company Model: CPR-6500-H Model: Thoroughbred portable batch Maximum throughput rate: 120 cubic yard of concrete per PM₁₀ control efficiency: 99.99% stack parameters: hour (cy/hr) Stack height: 7 ft 9 inch Stack opening: 14 7/16 inch x 19 1/6 inch or The plant has the following major components: equivalent stack diameter of 1.56 ft. Cement silo consists of two compartments - split 60/40 Exit air flow rate: 5,000 actual cubic feet per 14 cubic yard cement batcher minute (acfm) 4 compartment aggregate bin 12 cubic yard aggregate batcher Cement weight batcher safety/emergency dust collector: Manufacturer: Stephens manufacturing company Model: SV 20 Vent PM control efficiency: 99.96% stack parameters: Stack height: 27 ft 1/2 inch Stack opening: 10 inch x 13 inch or equivalent stack diameter of 1.07 ft. Exit air flow rate :+/- 500 (acfm) None Boiler: Natural gas fired Maufacturer: Pearson Model No.: P-10-20W Fuel Flow gas (maximum MMBtu/hr): 2.8

5.2 Emissions Inventory

Emissions inventory (EI) for the concrete batch plant was estimated by DEQ using emissions factors from AP-42 Section 11.12 (rev. 6/06) and production data provided in the application. For the boiler, emissions factors from AP-42 Section 1.4 (7/98) were used. Detailed EI can be found in Appendix B of the statement of basis. Table 5.2 provides a summary of the EI for criteria pollutants for the concrete batch plant. Table 5.3 provides a summary of the EI for criteria pollutants for the boiler.

Table 5.2 PM₁₄/PM MAXIMUM CONCRETE BATCH PLANT EMISSIONS WITH PERMITTED PRODUCTION LIMITS

	Emission Rate, Max.	Emission Rate, 24-hour average	Emission Rate, annual average
Emissions Point	lb/hr ^{1, 2}	lb/đay³	T/yr ⁴
Proce	ss Fugitive Emissions	1	
Aggregate delivery to ground storage	0.37	4.46	0.78
Sand delivery to ground storage	0.08	1.01	0.18
Aggregate transfer to conveyor	0.37	4.46	0.78
Sand transfer to conveyor	0.08	1.01	0.18
Aggregate transfer to elevated storage	0.37	4.46	0.78
Sand transfer to elevated storage	0.08	1.01	0.18
Facility Wide Total (Except for Road Dust)	2.40	28.82	5.00
Poin	t Sources Emissions		
Total emissions from CPR-6500-H ⁵	1.03	12.40	2.15
Emissions from SV 20 Vent ⁶	0.46	5.47	0.95

¹The EFs are taken from AP-42, Table 11.12-3 (version 10/01)

Table 5.3 CRITERIA POLLUTANT MAXIMUM BOILER EMISSIONS

Source Description	PM ₁₀ *		COp		NO _x °		SO ₂ ⁴		VOC*	
	lb/hr	T/yr	lb/hr	T/yr	lb/hr	T/yr	lb/hr	Т/уг	lb/kr	T/yr
Boiler	0.021	0.09	0.231	1.01	0.275	1.20	.002	0.01	0.015	0.07

^{*}Particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers

5.3 Modeling

The facility has demonstrated compliance to DEQ's satisfaction that emissions from this facility will not cause or significantly contribute to a violation of any ambient air quality standard with the permitted production limits. Lead emissions are below the modeling thresholds set forth in the State of Idaho Air Quality Modeling Guideline. Therefore, no modeling analysis was required for lead. DEQ conducted the facility ambient impact analysis by using DEQ's generic modeling approach for a portable truck concrete batch plant with the exception of considering the use of central dust collector system (CPR-6500-H) to control the emissions from truck mix loadout. The detailed modeling analysis is included in Appendix C. A summary of the modeling analysis is presented in Tables 5.3 and 5.4.

² Max. hourly rate = EF x Max. hourly production rate (Yd³/hr)

³ Hourly emissions rate, 24-hr average = Max.hourly emissions rate x proposed daily production / max. hour production rate / 24. Daily emissions rate = hourly emissions rate, 24-hr average x 24 hr/day.

⁴ Annual average hourly emissions rate = Max hourly rate x proposed annual production rate/max, hourly production rate/8760 hr. Annual emissions rate = Annual average hourly emissions rate x 8760 hours/yr/(2000 lb/T)

⁵ Per application, CPR-6500-H collects dust from cement sile, cement weigh batcher, and truck mix loading

⁴SV 20 Vent is the safety dust control vent in case CPR-6500-H is broke down.

^bCarbon monoxide

Oxides of nitrogen

^dSulfur dioxide

^{*}Volatile organic compound

Table 5.3 FULL IMPACT ANALYSIS RESULTS FOR PM16

Pollutant	Averaging Period	Maximum Modeled Concentration (μ g/m³) °	Background Concentration (µg/m³)	Total Ambient Impact (µg/m²)	NAAQS ^b (µg/m³)	Percent of NAAQS
PM ₁₀ ^c	24-hour	50.2 ^d	73	123.2	150	82
	Annual	15.4*	26	41.4	50	83

^{*}Micrograms per cubic meter

Table 5.4 FULL IMPACT ANALYSIS RESULTS FOR TAPS

TAP	Averaging Period	Maximum Modeled Concentration (μg/m3)	AACC (μg/m3)	Percent of AACC
Arsenic	Annual	1.88E-4	2.3E-4	82
Beryllium	Annual	1.69E-5	4.2E-3	0.4
Nickel	Annual	7.44E-4	4.2E-3	18

5.4 Regulatory Review

This section describes the regulatory analysis of the applicable air quality rules with respect to this PTC.

IDAPA 58.01.01.201 Permit to Construct Required

This facility is proposing to build a brand new portable truck mix concrete batch plant and natural gas fired boiler. The proposed project does not qualify for an exemption under IDAPA 583.01.01.220 through 223 of the Rules; therefore, a Permit to Construction is required.

The facility has demonstrated compliance, to DEQ's satisfaction, that this project will not cause or significantly contribute to a violation of any ambient air quality standards of PM₁₀, and lead.

IDAPA 58.01.01.203.03...... Toxic Air Pollutants

"No permit to construct shall be granted for a new or modified stationary source unless the applicant shows to the satisfaction of the Department all of the following:....03. Toxic Air Pollutants Using the methods provided in Section 210, the emissions of toxic air pollutants from the stationary source or modification would not injure or unreasonably affect human or animal life or vegetation as required by Section 161. Compliance with all applicable toxic air pollutant carcinogenic increments and toxic air pollutant non-carcinogenic increments will also demonstrate preconstruction compliance with Section 161 with regards to the pollutants listed in Sections 585 and 586."

The controlled arsenic and nickel emissions exceed their respective net screening emissions level, but the predicted ambient impacts for arsenic and nickel controlled emissions comply with their respective acceptable ambient concentration (AACC) for carcinogens. The controlled beryllium emissions are less than its EL and the predicted ambient impact of uncontrolled beryllium emissions exceeds its AACC, but the predicted ambient impact of controlled beryllium emissions complies with its AACC. In accordance with IDAPA 58.01.01.210.08, the modeled controlled emissions rates of arsenic, beryllium, and nickel are required to be included in the permit as emissions limits. With the emissions limits, the

National ambient air quality standards

Particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers

⁶Maximum 6th highest modeled concentration from modeling a five-year meteorological data set

[&]quot;Maximum 1* highest modeled concentration from modeling each of five years separately

This facility is not subject to NESHAP or MACT.

5.5 Permit Conditions Review

- 5.5.1 Permit Condition 1.1 states the purpose for this permit action.
- 5.5.2 Permit Conditions 2.1 and 2.2 provide the plant process description and the emissions control description.
- 5.5.3 Permit Condition 2.3 sets the emissions limits for PM₁₀, Arsenic, Beryllium, and Nickel. With permitted daily production rate, the ambient impact from the plant does not exceed the PM₁₀ 24-hour ambient air quality standard (NAAQS). The Arsenic, Beryllium, Nickel emissions are in particulate form and are controlled by the C & W central dust collection system. The controlled arsenic and nickel emissions exceed their respective net screening emissions level, but the predicted ambient impacts for arsenic and nickel controlled emissions comply with their respective AACCs. The controlled Beryllium emissions are less than its EL and the predicted ambient impact of uncontrolled Beryllium emissions exceeds its AACC, but the predicted ambient impact of controlled Beryllium emissions complies with its AACC. In accordance with IDAPA 58.01.01.210.08, the modeled controlled emissions rates of Arsenic, Beryllium, and Nickel are required to be included in the permit as emissions limits.

To demonstrate compliance with the emissions limits, the daily and annual concrete production rates are limited in Permit Condition 2.5, and the concrete production rates monitoring is required in Permit Condition 2.6, the dust collectors are required to operate in accordance with the O&M manual to ensure the control of the emissions.

5.5.4 Permit Condition 2.4 establishes the visible emissions limit for stacks, vents, and openings in the plant.

To demonstrate compliance with the visible emissions limit, the permittee is required to conduct monthly visible emissions inspection as specified in Permit Condition 2.10. The permittee is required to operate the dust collectors in accordance with the O & M manual in Permit Condition 2.6.

- 5.5.5 The permittee is required to control fugitive emissions as specified in Permit Conditions 2.7, 2.8 and 2.11.
- 5.5.6 Permit Condition 2.12 states that the plant cannot operate in any PM₁₀ nonattaiment area.
- 5.5.7 Permit Condition 2.13 requires the permittee to maintain records on site for the most recent two-year period and to make the records available to DEQ representatives upon request.
- 5.5.8 Permit Condition 2.14 requires the permittee to register the concrete batch plant whenever relocated.
- 5.5.9 Permit Condition 3.1 and 3.2 provides a process and emission control description for the boiler.
- 5.5.10 Permit Condition 3.3 establishes visible emissions limit.
- 5.5.11 Permit Condition No. 3.4 establishes grain loading limits for the boiler.
- 5.5.12 Permit Condition No. 3.5 allows the boiler to be operated exclusively by natural gas. Correspondence on fuel use is included in Appendix D.

5. PERMIT FEES

G & B submitted a \$1,000 PTC application fee on May 2, 2006, in accordance with IDAPA 58.01.01.224. G & B's emissions increase is between 1 to 10 tons range. In accordance with IDAPA 58.01.01.225, the PTC processing fee is \$2,500. The processing fee was paid on July 28, 2006.

Table 6.1 PTC PROCESSING FEE TABLE

	Emissions Inventory							
Pollutant	Annual Emissions Increase (T/yr)	Annual Emissions Reduction (T/yr)	Annual Emissions Change (T/yr)					
NOx	1.20	0	1.20					
SO ₂	0.0	0	0.0					
ÇO	1.01	0	1.01					
PM ₁₀	2.29	0	2.29					
VOC	0.0	0	0.0					
TAPS/HAPS	0ª	0	0					
Total:	4.50	0	4.50					
Fee Due	\$2,500.00	,						

^{*}TAP emissions change is included in the PM₁₀ emissions change

6. PERMIT REVIEW

7.1 Regional Review of Draft Permit

DEQ's Boise Regional Office was provided the draft permit for review on July 6, 2006. The Boise Regional Office had five comments. The comments were addressed.

7.2 Facility Review of Draft Permit

The draft permit was sent to the facility for review on July 18, 2006. The facility did not have any comments.

7.3 Public Comment

An opportunity for public comment period on the PTC application was provided from June 1, 2006, to June 30, 2006, in accordance with IDAPA 58.01.01.209.01.c. During this time, there were no comments on the application and no requests for public comment period on DEQ's proposed action.

7. RECOMMENDATION

Based on review of application materials, and all applicable state and federal rules and regulations, staff recommends that G & B be issued final PTC No. P-060019. No public comment period is recommended, no entity has requested a comment period, and the project does not involve PSD requirements.

TD/bf P-060019

G:\Air Quality\Stationary Source\SS Ltd\PTC\G & B Redi-Mix\P-060019\Final\P-060019 Final SB.doc

Appendix A

Permit to Construct No. P-060019

Americrete Ready-Mix Concrete, Inc., G & B Redi-Mix Portable Truck Mix Concrete Batch Plant

Facility ID No. 777-00384

AIRS Information

AIRS/AFS FACILITY-WIDE CLASSIFICATION DATA ENTRY FORM

Facility Name:	Americrete Ready-Mix Concrete, Inc., G & B Redi-Mix				
Facility Location:	Portable				
AIRS Number:	777-00384				

AIR PROGRAM POLLUTANT	SIP	PSD	NSPS (Part 60)	NESHAP (Part 61)	MACT (Part 63)	SM80	TITLEV	AREA CLASSIFICATION A-Attainment U-Unclassified N- Nonattainment
SO ₂	В							U
NO,	В							U
со	В							บ
PM ₁₀	В						В	U
PT (Particulate)	В							· -
voc	В							U
THAP (Total HAPs)	В							
			APPLICABLE SUBPART					

^a Aerometric Information Retrieval System (AIRS) Facility Subsystem (AFS)

b AIRS/AFS Classification Codes:

- A = Actual or potential emissions of a pollutant are above the applicable major source threshold. For HAPs only, class "A" is applied to each pollutant which is at or above the 10 T/yr threshold, or each pollutant that is below the 10 T/yr threshold, but contributes to a plant total in excess of 25 T/yr of all HAPs.
- SM = Potential emissions fall below applicable major source thresholds if and only if the source complies with federally enforceable regulations or limitations.
- B = Actual and potential emissions below all applicable major source thresholds.
- C = Class is unknown.
- ND = Major source thresholds are not defined (e.g., radionucides).

Appendix B

Permit to Construct No. P-060019

Americrete Ready-Mix Concrete, Inc., G & B Redi-Mix Portable Truck Mix Concrete Batch Plant

Facility ID No. 777-00384

Emissions Inventory

		<u> </u>	Ć.	D	E I	F	Ġ
1		Formiting workship	e for GAB Redi Albi				
2	Facility:	G&B Red-Mix					
1	Permit No.:						
4	Facility ID No.:				•		
1	Emissione Unit:			····		1	
_	Rated Heat Input Rate:	2.5 (4)(4)(4)		·		;	
		diffication, or reconstruction date in	NADAY:			-	
<u> </u>		his boiler (Ingut a value or leave it		-			
	value.j:	• • •	i	24	10° act (heat inp	ut rate MMBtufte i	heating value 102
0	Type of botter (Input Y/H to	each question)	"YMY"				
	te the boiler a large well-fired		n				
	is the botter a tangential fred	boler?			. !	i	ĺ
12					-	-	
13	Type of NO, control (input	T/PI to each question/			"Y/N"?		
15	le this boiler NOx controlled?		·· · -		^	ļ	•
	Criterie Air Poliutents	111					
17		Emissione Factors	(EF4)	Emis	Hone		
18		Mo/10° acf	Ib/MIABlu	(b/hr	T/yr		
	PM	7.6	0.0078 0.0075	0.021 0.021	0.09	. ,	
10	PM				0.09		
21	NOx	100	0.0960	0.276	1.20	1	
22	co		0.0024	0.231	1.01	1	
	30,	0.6	0.0006	0.002	0.01	Ì	
	voc	5.5	0.0054	0.015	0.07	-	
掃	Lead (Pd) TAPe	0.0005	0.0000	0.000	6,00€-06	į	
27			Emissions Fed	tors (EFs)	Emissions	TAP EL	Are emissions
28	Cass No.	TAPS	Ib/10 ⁸ acf	DAMEN.	ibitv	litythr	below EL? 3
	71-43-2	Benzone (HAP)	2.1 E-03	2.08 E-08	5.78E-06	8.00E-04	below
	50-32-8	Benzo(a)ovrana ²	1.2 E-06	1.18 E-09	3.29€-09	2.00E-08	below
31	50-00-0	Formeldehyde (HAP)	7.5 E-02	7.36 E-08	2.00E-04	6.10E- <u>04</u>	pelow
32	110-64-3	Hexane (HAP)	1.8 E+00	1.76 E-03	4.94E-03	1.20E+01	below
	91-20-3	Naphthalene (HAP)	6.1 E-04	5.98 E-07	1.67E-06	3.33E+00	below
	109-66-0	Pentane	2.8 E+00	2.55 E-03	7.14E-03	1.18E+02	below
	100-48-3 7440-38-2	Toluene (HAP) Arsenic (HAP)	3.4 E-03 2.0 E-04	3.33 E-06 1.96 E-07	9.33E-06 5.49E-07	2,50E+01	below
	7440-30-3	Barium	4.4 E-03	4.31 E-06	1,212-06	3.30E-02	below
	7440-41-7	Bendlum (HAP) 2	1.2 E-06	1.18 E-06	3.29E-06	2.00E-06	below
39	7440-43-9	Cadmium (HAP)	1.1 E-03	1.00 E-06	3.02E-06	3.70E-06	below
_	7440-47-3	Chromium (HAP)	1.4 E-03	1.37 E-06	3.84E-08	3.30E-02	pelaw
-	7440-46-4	Cobell (HAP)	8.4 E-05 8.5 E-04	9.24 E-04	2.31E-07 2.33E-08	3.30E-03 1.30E-02	below
	7440-50-8 7430-98-5	Copper Mengenese (HAP)	3.8 E-04	9.33 E-07 3.73 E-07	1.04E-06	3.33E-01	below
_	7430-97-0	Mercury (HAP)	2.6 E-04			7.00E-03	below
				2.58 E-07	7.14E-07	/.000-931	
	7439-98-7	Molybdenum	1.1 6-03	2,56 E-07 1,08 E-08	7.14E-07 3.02E-08	8.67E-01	Delow
	7440-02-0	Nickel (HAP)	1.1 E-03 2.1 E-03	1.08 E-06 2.08 E-08	3.02E-08 5.76E-08	6.67E-01 2.70E-05	belgw belgw
47	7440-02-0 7782-49-2	Nickel (HAP) Selenkum (HAP) ²	1.1 E-03 2.1 E-03 2.4 E-05	1.08 E-08 2.08 E-08 2.36 E-08	3.026-08 5.766-08 6.566-08	8.67E-01 2.70E-05 1.30E-02	below below
47 40	7440-02-0 7702-49-2 7440-02-2	Nickel (HAP) Selenium (HAP) ² Vasedium ⁴	1.1 E-03 2.1 E-03 2.4 E-05 2.3 E-03	1.08 E-06 2.08 E-06 2.36 E-08 2.26 E-08	3.026-08 5.766-08 6.696-08 1.136-06	8.67E-01 2.70E-05 1.30E-02 3.00E-03	below below
47 49 40	7440-02-0 7762-49-2 7440-62-2 7440-68-6	Nickel (HAP) Selenium (HAP) ² Venedium ⁴ Zinc	1.1 E-03 2.1 E-03 2.4 E-05 2.3 E-03 2.6 E-02	1.08 E-06 2.08 E-08 2.36 E-08 2.26 E-08 2.84 E-05	3.026-08 5.766-08 6.566-08	8.67E-01 2.70E-05 1.30E-02	below below
47 49 49 50	7440-02-0 7782-49-2 7440-62-2 7440-68-8	Nickel (HAP) Selentum (HAP) Venedium Zinc Benz(s)enthracene (HAP) <	1.1 E-03 2.1 E-03 2.4 E-06 2.3 E-03 2.9 E-02 1.60E-06	1.08 E-06 2.08 E-08 2.36 E-08 2.26 E-08 2.84 E-06 1.78 E-09	3.026-08 5.766-08 6.696-08 1.136-06	8.67E-01 2.70E-05 1.30E-02 3.00E-03	below below
47 49 40	7440-02-0 7782-49-2 7440-62-2 7440-68-8	Nickel (HAP) Selenium (HAP) ² Venedium ⁴ Zinc	1.1 E-03 2.1 E-03 2.4 E-05 2.3 E-03 2.6 E-02	1.08 E-06 2.08 E-08 2.36 E-08 2.26 E-08 2.84 E-05	3.026-08 5.766-08 6.696-08 1.136-06	8.67E-01 2.70E-05 1.30E-02 3.00E-03	below below
47 49 49 50 51	7440-02-0 7782-49-2 7440-02-2 7440-08-8	Nickel (HAP) Selenium (HAP) 2 Yanadium 5 Zinc Bersz(e)entiracene (HAP) < Benso(b)flyoranthene (HAP) <	1.1 E-03 2.1 E-03 2.4 E-08 2.3 E-03 2.9 E-02 1.80E-08	1.08 E-08 2.09 E-08 2.36 E-08 2.26 E-08 2.04 E-05 1.76 E-09	3.026-08 5.766-08 6.696-08 1.136-06	8.67E-01 2.70E-05 1.30E-02 3.00E-03	below below
47 49 50 51 52 53 64	7440-02-0 7762-49-2 7440-62-2 7440-68-8 NA (PAH)	Nickei (HAP) Selenium (HAP) Venedium Zinc Benz(e)enfracene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene(HAP) < Benzo(b)fluoranthene(HAP) < Chrystelevene (HAP) <	1.1 g-03 2.1 g-03 2.4 g-06 2.3 g-03 2.9 g-02 1.80g-08 1.80g-08 1.2 g-08 1.80g-08	1.08 E-08 2.09 E-08 2.36 E-09 2.26 E-09 2.04 E-05 1.76 E-09 1.76 E-09 1.78 E-09	3.026-08 5.766-08 6.696-08 1.136-06	8.67E-01 2.70E-05 1.30E-02 3.00E-03	below below
47 49 50 51 52 53 64 56	7440-02-0 7762-49-2 7440-62-2 7440-68-8 NA (PAH)	Nickei (HAP) Selenium (HAP) Yanadium Zinc Benz(e)enfiracene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(a)ovanthene(HAP) < Chysarie (HAP) < Olipanz(e,h)anthracene (HAP) <	1.1 E-03 2.1 E-03 2.4 E-03 2.3 E-03 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08	1.08 E-06 2.09 E-06 2.36 E-06 2.26 E-06 2.26 E-05 1.76 E-09 1.78 E-09 1.78 E-09 1.78 E-09	3.026-08 5.766-08 6.696-08 1.136-06	8.67E-01 2.70E-05 1.30E-02 3.00E-03	below below
47 49 50 51 52 53 54 56	7440-02-0 7762-49-2 7440-02-2 7440-66-6 NA (PAH)	Nickei (HAP) Selenium (HAP) Venedium Zinc Benz(e)enfracene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene(HAP) < Benzo(b)fluoranthene(HAP) < Chrystelevene (HAP) <	1.1 £-03 2.1 £-03 2.4 £-06 2.3 £-03 2.9 £-02 1.80£-08 1.80£-08 1.80£-08 1.80£-08 1.80E-08 1.80E-08	1.08 E-06 2.09 E-06 2.36 E-06 2.36 E-06 2.84 E-05 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-09	3.028-08 5.78E-08 6.50E-00 1.13E-09 7.00E-08	8.67E-01 2.70E-08 1.30E-02 3.00E-03 6.67E-01	pelow pelow pelow pelow pelow
47 49 49 50 51 52 53 64 56 56 57	7440-02-0 7762-49-2 7440-62-2 7440-68-8 NA (PAH)	Nickel (HAP) 2 Venedium (HAP) 2 Venedium 2 Zinc Benz(e)en(nracene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Chrysene (HAP) < Chrysene (HAP) < Chrysene (HAP) < Indexo(1,2,3-cd)pyrane(HAP) <	1.1 E-03 2.1 E-03 2.4 E-03 2.3 E-03 2.9 E-02 1.80E-08 1.80E-08 1.2 E-09 1.80E-08 1.2 E-09 1.1 E-08 1.1 E-08 1.1 E-08	1.08 E-06 2.09 E-06 2.36 E-06 2.26 E-06 2.26 E-05 1.76 E-09 1.78 E-09 1.78 E-09 1.78 E-09	3.026-08 5.766-08 6.696-08 1.136-06	8.67E-01 2.70E-05 1.30E-02 3.00E-03	below below
47 49 49 50 51 52 53 64 59 57	7440-02-0 7792-49-2 7440-49-5 7440-49-5 NA (PAH) Total PAH *Correlation of Air Problems, Employ	Nickei (HAP) Selenium (HAP) Yanadium Zinc Benz(e)enfiracene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(a)ovanthene(HAP) < Chysarie (HAP) < Olipanz(e,h)anthracene (HAP) <	1.1 g-03* 2.1 g-03* 2.4 g-06* 2.3 g-03* 2.9 g-02* 1.80g-08* 1.80g-	1.08 E-06 2.09 E-06 2.36 E-06 2.36 E-06 2.84 E-05 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-09	3.028-08 5.78E-08 6.50E-00 1.13E-09 7.00E-08	8.67E-01 2.70E-08 1.30E-02 3.00E-03 6.67E-01	pelow pelow pelow pelow pelow
47 49 49 50 51 52 53 64 59 57 58	7440-02-0 7762-49-2 7440-69-5 NA (PAH) Total PAH *Correlation of Air Polysters Emission *Eff on AP-42 to Intel 49 (1991-1991) B. sales from (IMPA 98 07 19 18 18	Nickel (HAP) Selentum (HAP) Venedium Zinc Benz(e)enthracene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Chrysene (HAP) < Chrysene (HAP) < Chrysene (HAP) < Chrysene (HAP) < Indexo(1,2,3-od)pyrene (H	1.1 E-03 2.1 E-03 2.4 E-03 2.4 E-06 2.3 E-03 2.9 E-02 1.80E-08 1.80E-08 1.2 E-09 1.80E-08 1.2 E-09 1.80E-08 1.2 E-09 1.80E-08 1.2 E-09	1.08 E-06 2.09 E-08 2.36 E-00 2.26 E-00 2.26 E-00 1.76 E-00 1.76 E-00 1.76 E-00 1.76 E-00 1.78 E-00 1.78 E-00	3.028-08 5.78E-08 6.59E-09 1.13E-09 7.99E-05	8.67E-01 2.70E-05 1.30E-02 3.00E-03 6.67E-01	below below below below
47 49 49 50 51 52 53 64 59 57 58	7440-02-0 7792-49-2 7440-62-2 7440-68-5 NA (PAH) Total PAH *Correction of AP Polyment Emissi *EF in AP-42 to finish as joye than; *EI, teles from (DAPA 58.01.91.56 *In (CAPA 88.01.01.58.56. the EL and	Nickel (HAP) Selenium (HAP) Selenium (HAP) Vanadium Zinc Benz(s)enthracene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Chrysene (HAP) < Chrysene (HAP) < Indeno(1,2,3-cd)pyrene(HAP) < Indeno(1,2,3-	1.1 E-03 2.1 E-03 2.4 E-03 2.4 E-03 2.3 E-03 2.9 E-02 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.14E-08	1.08 E-06 2.09 E-06 2.36 E-06 2.36 E-06 2.36 E-06 2.36 E-06 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-00 1.16 E-06 1.78 E-08	3.028-08 5.798-08 6.596-09 1.138-09 7.998-95	8.67E-01 2.70E-05 1.30E-02 3.00E-03 6.67E-01	pelger pelger pelger pelger
47 49 50 51 52 53 64 59 57 58 60	7440-02-0 7792-49-2 7440-02-2 7440-08-6 NA (PAH) Tatal PAH *Correlation of Air Problems Emisel *Ef in AP-42 to field as jose than 1 *E. token 1001 (IAPA 98.01.01.08 *In inchinal paid 101.586. the EL on head input gate (IAMBushr) of Vis (1	Nickel (HAP) Selentum (HAP) Venedium Zinc Benz(e)enthracene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Chrysene (HAP) < Chrysene (HAP) < Chrysene (HAP) < Chrysene (HAP) < Indexo(1,2,3-od)pyrene (H	1.1 E-03 2.1 E-03 2.4 E-03 2.4 E-03 2.3 E-03 2.9 E-02 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.14E-08	1.08 E-06 2.09 E-06 2.36 E-06 2.36 E-06 2.36 E-06 2.36 E-06 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-00 1.16 E-06 1.78 E-08	3.028-08 5.798-08 6.596-09 1.138-09 7.998-95	8.67E-01 2.70E-05 1.30E-02 3.00E-03 6.67E-01	pelger pelger pelger pelger
47 49 59 51 82 53 85 57 58 80 80 80 80 80 80 80 80 80 80 80 80 80	7440-02-0 7792-49-2 7440-62-2 7440-68-5 NA (PAH) Total PAH *Correction of AP Polyment Emissi *EF in AP-42 to finish as joye than; *EI, teles from (DAPA 58.01.91.56 *In (CAPA 88.01.01.58.56. the EL and	Nickel (HAP) Selenium (HAP) Selenium (HAP) Vanadium Zinc Benz(s)enthracene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Benzo(b)fluoranthene (HAP) < Chrysene (HAP) < Chrysene (HAP) < Indeno(1,2,3-cd)pyrene(HAP) < Indeno(1,2,3-	1.1 E-03 2.1 E-03 2.4 E-03 2.4 E-03 2.3 E-03 2.9 E-02 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.14E-08	1.08 E-06 2.09 E-06 2.36 E-06 2.36 E-06 2.36 E-06 2.36 E-06 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-00 1.16 E-06 1.78 E-08	3.028-08 5.798-08 6.596-09 1.138-09 7.998-95	8.67E-01 2.70E-05 1.30E-02 3.00E-03 6.67E-01	pelger pelger pelger pelger
47 48 59 51 52 53 54 55 57 57 57 58 60 62	7440-02-0 7762-49-2 7440-69-6 NA (PAH) Total PAH *Correlation of Air Polluturi, Emissi Eff on Air-02 to Intel on jope lines *St. sales from (JAPA 30 07) 071 081 *In (JAPA 36/01 07) 546, the Et. am habit input rate (MARININ) of Vx (1 from SURPA 68 07) 0.566	Nickel (HAP) Selentum (HAP) Venedium Zinc Bentz(e)enthracene (HAP) < Bentz(e)enthracene (HAP) < Bentz(e)enthracene (HAP) < Bentzo(b)fluoranthene (HAP) < Bentzo(b)fluoranthene (HAP) < Chrysene (HAP) < Olivers(e, h)enthracene (HAP) < Indexo(1,2,3-cd)pyrene(HAP) < Indexo(1,2,3-c	1.1 E-03 2.1 E-03 2.4 E-03 2.4 E-03 2.3 E-03 2.9 E-02 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.14E-08	1.08 E-06 2.09 E-06 2.36 E-06 2.36 E-06 2.36 E-06 2.36 E-06 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-09 1.76 E-00 1.16 E-06 1.78 E-08	3.028-08 5.798-08 6.596-09 1.138-09 7.998-05	8.67E-01 2.70E-05 1.30E-02 3.00E-03 6.67E-01	pelger pelger pelger pelger
47 49 50 51 51 53 64 65 65 65 65 65 65 65 65 65 65 65 65 65	7440-02-0 7762-49-2 7440-02-2 7440-08-6 NA (PAH) Total PAH *Certainton of Air Pollutant, Ergiss *Ef on Air-42 to Inted as jops, then, *E. total PAP-42 to Inted as jops, then, *E. total PAP-42 to Inted as jops, then, *In ICAPA 860 Of 19.86, or EL on half input rate (Militahru) of V x (1 from SUAPA 68 of 0.668. *TAP's boller meets grain loadin The boller meets grain loadin	Nickel (HAP) Selentum (HAP) Selentum (HAP) Vanadium Zinc Bensz(s)anjhracene (HAP) < Bensz(s)anjhracene (HAP) < Bensz(k)fluoranjhene (HAP) < Bensz(k)fluoranjhene (HAP) < Chrystele (HAP) < Chrystele (HAP) < Chrystele (HAP) < Chrystele (HAP) < Indeno(1,2,3-cd)syrane(HAP) < Inden	1.1 E-03 2.1 E-03 2.2 E-03 2.4 E-05 2.3 E-03 2.9 E-02 1.80E-06 1.80E-06 1.80E-06 1.80E-06 1.80E-06 1.80E-06 1.80E-06 1.14E-05 Direction (Rev. 3488) Accordance (1.08 E-06 2.09 E-06 2.36 E-06 2.36 E-06 2.36 E-06 2.36 E-06 2.36 E-06 1.76 E-09 1.76 E-09 1.76 E-09 1.78 E-00 1.18 E-06 1.12 E-08	3.028-08 5.798-09 0.596-09 1.136-09 7.996-95 3.136-09	8.67E-01 2.70E-05 1.30E-02 3.00E-03 6.67E-01	pelger pelger pelger pelger

1 of 1 El NG fired boiler (7/14/2006) 11/2/04(rev 00)

Appendix C

Permit to Construct No. P-060019

Americrete Ready-Mix Concrete, Inc., G & B Redi-Mix Portable Truck Mix Concrete Batch Plant

Facility ID No. 777-00384

Modeling Review

MEMORANDUM

DATE:

July 24, 2006

TO:

FROM:

Kevin Schilling, Stationary Source Modeling Coordinator, Air Program

PROJECT NUMBER: 9-060019

SUBJECT: Modeling Review for the Americante Ready-Mix Concrete, Inc. DBA - G&B Redi-Mix

Permit to Construct Application for a new Portable Truck Ready-Mix Concrete Plant,

Plant 3

1.0 Summary

Americrete Ready-Mix Concrete, Inc. DBA - G&B Redi-Mix (G&B) submitted a Permit to Construct (PTC) application for a portable truck ready-mix concrete batch plant. DEQ conducted air quality analyses involving atmospheric dispersion modeling of emissions associated with operation of the plant to demonstrate that the facility would not cause or significantly contribute to a violation of any ambient air quality standard (IDAPA 58.01.01.203.02).

The modeling analyses: 1) utilized appropriate methods and models; 2) was conducted using reasonably accurate or conservative model parameters and input data; 3) adhered to established DEO guidelines for new source review dispersion modeling; 4) showed either a) that predicted pollutant concentrations from emissions associated with the proposed facility were below significant contribution levels (SCLs); or b) that predicted pollutant concentrations from emissions associated with the facility, when appropriately combined with background concentrations, were below applicable air quality standards at all receptor locations. Table 1 presents key assumptions and results that should be considered in the development of the permit.

Table 1. KEY ASSUMPTIONS USED IN MODELING ANALYSES					
Criteria/Assumption/Result	Explanation/Consideration				
Impacts for the facility were based on generic modeling	Although the actual plant configuration may vary from that used for the				
analyses conducted for a hypothetical facility, with	generic modeling analyses, DEQ air modeling staff have determined				
impacts scaled by the proposed production rates.	the generic analyses appropriately represent impacts from facility				
<u>[</u>	operations.				

2.0 **Background Information**

2.1 Applicable Air Quality impact Limits and Modeling Requirements

This section identifies applicable ambient air quality limits and analyses used to demonstrate compliance.

2.1.1 Area Classification

The G&B facility will only be located in areas designated as an attainment or unclassifiable for particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers (PM₁₀). Because there are no emissions of sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), or ozone (O₃) associated with operation of the ready-mix plant, the area classification for these pollutants has no impact on location restrictions for the plant.

Page 1

2.1.2 Significant and Full Impact Analyses

If estimated maximum pollutant impacts to ambient air from the emissions sources associated with the ready-mix plant exceed the significant contribution levels (SCLs) of IDAPA 58.01.01.006.91, then a full impact analysis is necessary to demonstrate compliance with IDAPA 58.01.01.203.02. A full impact analysis for attainment area pollutants involves adding ambient impacts from facility-wide omissions to DEO-approved background concentration values that are appropriate for the criteria pollutant/averagingtime at the facility location and the area of significant impact. The resulting maximum pollutant concentrations in ambient air are then compared to the National Ambient Air Quality Standards (NAAQS) listed in Table 2. Table 2 also lists SCLs and specifies the modeled value that must be used for comparison to the NAAQS.

Table 2. APPLICABLE REGULATORY LIMITS						
Polletant	Averaging Period	Significant Contribution Levels* (µg/m²)*	Regulatory Limit ((pg/m²)	Medeled Value Used ^d		
PM ₁₀ *	Anaual	1.0	507	Maximum L ^N highest ⁰		
E.VE.30.	24-hour	5.0	150 ^h	Maximum 6th highest		
Carbon monoxide (CO)	8-hour	500	10'000,	Maximum 2" highest		
Carbon monoxide (CO)	l-hour	2,000	40,000	Maximum 2 nd highest ⁶		
	Annual	1.0	#0"	Maximum I'm highest		
Sulfur Dioxide (SO ₂)	24-hour	5	365 ^j	Maximum 2 nd highest ^a		
	3-hour	25	1,300	Maximum 2 nd highest ^a		
Nitrogen Dioxide (NO ₂)	Annual	1.0	100	Maximum i" highest ^a		
Load (Pb)	Quarterly	NA NA	1.5	Maximum t ^{er} highest ^e		

^{*}IDAPA \$8.01.01.006.91

2.2 Background Concentrations

Background concentrations were revised for all areas of Idaho by DEO in March 2003. Background concentrations in areas where no monitoring data are available were based on monitoring data from areas with similar population density, meteorology, and emissions sources. Default rural/agricultural PM₁₀ background concentrations of 73 µg/m³ for the 24-hour averaging period and 26 µg/m³ for the annual averaging period were used because ready-mix batch plants are typically located outside of urban areas.

Modeling impact Assessment

3.1 Modeling Methodology

Table 3 provides a summary of the modeling parameters used in analyses.

^{*}IDAPA 58,01.01.577 for criteria po

[&]quot;The maximum 1" highest modeled value is always used for significant impact analysis

Particulate matter with an aerodynamic dismeter has then or equal to a nominal ten microm

over expected to be cauceded in any culendar year ancestration at any modeled receptor

Never expected to be exceeded more than once in any calendar year

tion at any modeled receptor when using five years of meteorological dam

Not to be exceeded more than once per year.

Hardy, Rick and Schilling, Kevin. Background Concentrations for Use in New Source Review Dispersion Modeling, Memorandum to Mary Anderson, March 14, 2003.

Table 3. MODELING PARAMETERS						
Parameter Description/Values Description						
Model	ISC-PRIME	ISC-PRIME version 04269				
Meteorological deta	1987-1991	Boise, Idaho, surface and upper air data				
Terrain	Not Considered	Initial location of plant is effectively flat				
Building downwash	Considered	The building profile input program (BPIP-PRIME) was used				
Receptor grid	Grid !	25-meter specing along boundary out about 1,00 meters				
	Grid 2	50-meter specing out about 600 meters				

"Universal Transverse Mercator

3.1.1 Modeling protocol and Methodology

DEQ conducted the modeling analyses; therefore, a modeling protocol was not submitted. Modeling was conducted using methods and data presented in the State of Idaho Air Quality Modeling Guideline.

A generic plant configuration for the ready-mix plant was used because of the potable nature of the facility. Emissions sources were located within a 20-meter by 20-meter area, and the ambient air boundary was assumed to be a 100-meter radius from the center of the emissions source area. Downwash from any buildings and equipment was accounted for by modeling effects from a 20-meter by 20-meter building. 10 meters high, centered on the emissions area.

3.1.2 Model Selection

ISC-PRIME was used by DEQ to conduct the ambient air analyses. ISC-PRIME utilizes the PRIME downwash algorithm that is superior to the downwash algorithm used in ISCST3. AERMOD, the dispersion model replacing ISCST3, also utilizes the PRIME downwash algorithm.

3.1.3 Meteorological Data

Boise, klaho, meteorological data were used for the ambient air quality analyses since the plant is initially proposed for Ada County.

PCRAMMET, the meteorological data preprocessor for ISCST-3, occazionally generates unrealistically low mixing heights as a result of interpolation algorithms used with the twice daily measured mixing heights. The modeling analyses were conducted using meteorological data corrected for low mixing heights. All mixing height values below 50 meters were replaced with a value of 50 meters.

3.1.4 Terrain Effects

DEQ determined it would not be appropriate to consider terrain effects because the plant is portable and the topography of future plant locations cannot be reasonably anticipated. The proposed initial location of the plant is effectively flat for dispersion modeling purposes.

3.1.5 Facility Layout

A generic, hypothetical plant layout was used because of the portable and dynamic nature of the equipment used. A 20-meter by 20-meter building, 10 meters high, was located at the center of the facility. Table 4 describes the modeled locations of emissions sources.

Table 4. LOCATIONS OF EMISSIONS SOURCES					
		Source Location			
Eszissions Source - Description	Source Type	Easting Location (meters)	Northing Location (motors)	Size of Volume Source (meters)	
SILO - bughouse, control dust collector	Point	0	10	NA	
AGG&SAN - aggregate/sand to/from storage pile	Volume	. 10	0	50 x 50 x 3	
AGGTOST - aggregate/sand to elevated storage	Volume	10	10	5x5x10	
TRUCKLO - uncaptured truck loading emissions	Valumo	0	0	10 x 10 x 10	

The center of the facility is at 0 meters out and 0 maters north, located at the center of a 20 meter by 20 meter building. *Cuptures and controls emissions from allo filling, weigh hopper loading, and truck loading.

3.1.6 Building Downwash

Potential plume downwash effects caused by structures and equipment potentially associated with the facility were accounted for in the modeling analyses by incorporating a 20-meter by 20-meter building, 10 meters high. The Building Profile Input Program for the PRIME algorithm (BPIP-PRIME) was used to calculate direction-specific building dimensions and Good Engineering Practice (GEP) stack height information from building dimensions/configurations and emissions release parameters for ISC-PRIME.

3.1.7 Ambient Air Boundary

The property boundary was assumed to be 100 meters from the center of the facility. DEQ assumed reasonable measures would be taken to ensure the general public are excluded from access to the property.

3.1.8 Receptor Network

The receptor grid used met the minimum recommendations specified in the State of Idaho Air Quality Modeling Guideline. DEQ determined the receptor grid was adequate to reasonably resolve maximum modeled concentrations.

3.1.9 Modeling Methodology

Generic modeling was conducted in support of permitting ready-mix concrete batch plants. This modeling assumed a throughput of 1,500 yd³/day and 500,000 yd³/year. Impacts for other throughput values are calculated by multiplying the generic modeling result by a ratio of potential throughput to 1,500 yd³/day or 500,000 yd³/year.

3.2 Emission Rates

Emissions rates used in the generic ready-mix concrete batch plant dispersion modeling analyses were based on emissions factors from EPA's AP-42 Section 11.12 (June 2006), Concrete Batching. Emissions estimates specifically for the G&B plant were based on maximum throughputs of 1,440 yd³/day and 500,000 yd³/year and were calculated by multiplying emissions rates for the generic modeling by a ratio of the potential throughput to the throughput used in the generic modeling (1,440/1,500 for 24-hour and 500,000/500,000 for annual).

Emissions estimates used in the G&B modeling analyses, generated from the generic ready-mix concrete batch plant modeling analyses and G&B-specific throughput values, vary somewhat from those calculated for the permit. This is primarily a result of rounding methods and slight differences between the emission factors used in the newer AP-42 Section 11.12 and the previous AP-42 Section 11.12. These differences will not substantially affect the results of the modeling analyses, and will not change the conclusions of the compliance demonstration.

3.2.1 Fugitive Dust Emissions from Sand and Aggregate Handling

The modeling of fugitive emissions from sand and aggregate handling are a function of wind speed, as indicated in EPA's AP-42, Section 13.2.4:

$$E = k (0.0032) \left[\frac{(U/5)^{1.3}}{(M/2)^{1.4}} \right]$$

E = PM₁₀ Emission factor (lb/ton)

k = Particle size multiplier (0.35 for PM₁₀)

U = Wind speed (miles per hour)

M = Material moisture content (percent)

AP-42 Section 11.12 (Ready-Mix Concrete Batch Plants) suggested moisture content values of 1.77 percent for aggregate and 4.17 for sand.

The base material handling emissions calculated for input to the model were based on a wind speed of 10 miles per hour (4.5 meters per second). Sand and aggregate handling emissions occur from three sources, including: 1) sand and aggregate to outside storage; 2) sand and aggregate from outside storage to conveyor; 3) sand and aggregate from conveyor to elevated storage. The first two sources types (sand and aggregate handling to the storage pile and handling from the storage pile to a conveyor) were grouped together for modeling purposes. Table 5 summarizes PM₁₀ emissions from sand and aggregate handling for the generic modeling, at 1,500 yd³/day and 500,000 yd³/year throughput, and for calculating the G&B plant-specific modeling results.

Criteria	Aggregate	Send	Combined Sand and Aggregate
Base Emissions Pactor	3.27E-3 lb/ton	9.16E-4 lb/ton	
Emissions for 1,500 yd*/day-point	0.179 lMw	0.0440 lb/hr	0.223 lb/hr
Emissions for 1,440 yd /day-point	0.172 lb/hr	0.0422 fb/hr	0.214 lb/hr
AGG&SAN® daily rate	0.344 lb/hr	0.0845 lb/hr	0.429 lb/hr_
AGGTOST [®] daily rate	0.172 lb/hr	0.0422 fb/hr	0.214 lb/hr_
Emissions for 500,000 yd /year-point	0.164 lb/br	0.0402 fb/hr	0.204 lb/hr
AGG&SAN® annual rate	0.328 lb/hr	0.0804 lb/hr	0.468 lb/hr
AGGTOST ⁶ annual rate	0. J64 lb/hr	0.0402 lb/br	0.264 lb/hr
actudes two emissions points for sand and aggr	regate handling: 1) transfer to	storage pile; 2) transfer to c	onveyor, Emissions for 1,440 yd /day

DEQ modeling used six emissions rates calculated at different wind speeds, then used an option within ISC to vary emissions as a function of wind speed. The base emissions calculated at 10 miles per hour were left unchanged, but adjustment factors were used as a function of wind speed for each hour modeled. ISC uses default wind speed categories with upper wind speeds in each category of 1.54 m/sec, 3.09 m/sec, 5.14 m/sec, 8.23 m/sec, and 10.8 m/sec. The sixth wind speed category does not have an upper bound.

Emissions were calculated for each category using the midpoint of the wind speed. For category 1, a lower bound of 0.0 m/sec was used, and for category 6 an upper bound of 14 m/sec was used. Table 6 shows the emissions adjustment factor for each wind speed category.

3.2.2 Total Facility Emissions

Table 7 and Table 8 list criteria emissions rates for sources included in the short-term and long-term dispersion modeling analyses, respectively. Emissions rates in the tables are representative of G&B operations of 1,440 yd3/day and 500,000 yd3/year. Emissions from silo filling, weigh hopper loading, and truck loading are captured and routed to the central dust collector baghouse. Uncaptured truck loading emissions were calculated by assuming 99.85 percent of uncontrolled emissions are captured, resulting in 0.15 percent of uncontrolled emissions at the truck loading point.

Table 6. WIND SPEED ADJUSTMENT FACTORS FOR SAND AND AGGREGATE HANDLING EMISSIONS				
Wind Speed Category	Midpoint Wind Speed for Category (m/sec (mph))	Emineious Adjuntmen Factor ^a		
1	0.77 (1.72)	0.101		
2	2.32 (5.18)	0.425		
3	4.12 (9.20)	0.897		
4	6.69 (14.95)	1.69		
5	9.52 (21.28)	2.67		
6	12.4 (27.74)	3.77		

Table 7. MODELEB EMISSIONS RATES FOR SHORT-TERM (24-HOUR AND LESS)				
Source ld Description		Emission Rates (lb/hr)*		
SILO	Central dust collector ^s	PM ₁₀ *		
Fugitive Emissions Sou	rom .	· · · · · · · · · · · · · · · · · · ·		
AGGASAN	Aggregate/sand to/from storage pile	0,429		
AGGTOST	Aggregate/sand to elevated storage*	0.214		
TRUCKLO	Truck loading	0.00790		

^{*}Particulate matter with an aerodynamic diameter less than or equal to a nominal ten micrometers
*Includes controlled croissions from coment and supplement transfer to the storage sile, weigh hopper loading, and controlled emissions from track

rements.

*Inclindes two transfer points for both sand and eggregate.

*Inclindes one transfer point for both sand and eggregate.

*Emissions in the table are based on emissions calculated for a 10 mph wind speed; actual emissions will vary with wind speed as indicated in

	Table 8. MODELED EMISSIONS RATES FOR LOS	NG-TERM (ANNUAL)				
		Emission Rates (Ne/hr)*				
Source Id	Description	PM _{in}				
SILO	Central dust collector	0.498				
Fugitive Emissions Sec	Fugitive Emissions Sources					
AGG&SAN	Aggregate/sand to/from storage pile	0.406				
AGGTOST	Aggregate/send to elevated storage*	0.204				
TRUCKLO	Truck loading	0.00751				

Table 9 lists applicable TAP emissions increases associated with the ready-mix concrete batch plant. Total TAP emissions of all other TAPs were below applicable screening emissions levels (ELs) and modeling was not required.

TODA 9. TAP EMISSIONS RATES USED IN MODELING				
7.0	TAP Emissions Rates (B/hr)			
TAP	\$1LQ ^b	TRUCKLO		
Arsenic	2.08E-5	7.13E-8		
Beryllium	1. \$7 E-6	5.88E-9		
Nickel	8.22E-5 2.87F-7			

Pounds per hour

Emission Release Parameters

Table 10 provides emissions release parameters, including stack height, stack diameter, exhaust temperature, and exhaust velocity.

	Table 10.	EMISSIONS A	ND STACK PAR	AMETERS	
Release Point /Location	Source Type	Stack Height (m)*	Modeled Diameter (m)	Stack Gas Temp. (K) ^b	Stack Gas Flow Velocity (ne/sec)*
SILO	Point	2.4	0.5	0 (ambient)	13.1
WEIGHOP	Point	8.4	0.3	0 (ambient)	2.8
Volume Sources		·			
Release Point /Location	Source Type	Rolesse Hoight (m)	Initial Herizontal Dispersion Coefficient on (m)	laitini Vertical Dispersion Coefficient o _{se} (m)	
AGG&SAN	Volume	1.5	11.6	0.7	
AGGTOST	Valume	5	1.16	4.65	•
TRUCKLO	Volume	5	2.33	4.65	

^{*}Kelvin

Particulate matter with an aerodynamic dissuctor less than or equal to a nominal ten micrometers.

Includes controlled emissions from content and supplement transfer to the storage sile, weigh hopper leading, and controlled entissions from truck

lement mansfer to the storage silo and controlled emissions from track loading *includes controlled emissions from coment and supplement mansfer to the sto *Value for emissions not captured and controlled by the storage sile bughouse

^{&#}x27;Meters per second

3.4 Regults for Significant and Full Impact Analyses

Compliance with NAAQS was demonstrated using full impact analyses. Results of preliminary significant impact analyses are not presented. Results of the full impact analyses are presented in Table 11.

	Table II. RESULTS OF FULL IMPACT ANALYSES						
Politatant	Averaging Period	Maximum Modeled Contentration (ug/m²)°	Sackground Concentration (µg/m³)	Total Ambient Impact (µg/m²)	NAAQ6*	Percent of NAAQS	
PM ₁₀ ^e	24-hour	50.24	73	123.2	150	82	
1 ~	Annual	15.4*	26	41,4	5♥	83	

[&]quot;Micrograms per cubis spetar

3.5 Results for TAPs Analyses

Compliance with TAP increments were demonstrated by modeling controlled TAP emissions (those TAPs with emissions exceeding the ELs) from silo loading and truck loading operations. Emissions limits for modeled TAPs are needed in the permit, as per fDAPA 58.01.01.210.08.c, since impacts of controlled emissions were used to demonstrate compliance. Table 10 summarizes the ambient TAP analyses.

Table 13. RESULTS OF TAP ANALYSES						
TAP Averaging Period Maximum Medeled AACC Percent of Concentration (µg/m²) (µg/m²)						
Arsenic	Annual	1.88E-4	2.3E-4	82		
Beryllium	Anoual	1.69E-5	4.2E-3	0.4		
Nickel	Annual	7.44E-4	4.2R-3	18		

[&]quot;Micrograms per cubic meter

4.0 Conclusions

The ambient air impact analyses demonstrated to DEQ's satisfaction that emissions from the facility will not cause or significantly contribute to a violation of any air quality standard.

[&]quot;National ambient air quality standards

Particulate matter with an accodynamic dispatter less than or equal to a postinal 10 micrometers

Meximum 6th highest madebal concentration from modeling a five-year mateurological data set

[&]quot;Maximum !" highest modeled concentration from modeling each of five years separately

Appendix D

Permit to Construct No. P-060019

Americrete Ready-Mix Concrete, Inc., G & B Redi-Mix Portable Truck Mix Concrete Batch Plant

Facility ID No. 777-00384

Correspondence

Tracy Drouin

From: Rick Reed [RickReed@cableone.net]

Sent: Saturday, June 03, 2006 3:30 PM

To: Tracy Drouin
Subject: GB Redi-Mix

Tracy,

I spoke with John Green. He said, "definately we do not need to permit for diesel. This plant will run on Natural Gas Only."

There will be no need to permit for diesel. We will be using Natural Gas. Thanks so much.

Richard Reed GB Redi-Mix 6701 E. Flamingo Avenue Nampa, Idaho 83687

Phone: (208) 466-6688 Fax: (208) 463-8786 Celi: (208) 447-9718

e-mail: RickReed@cableone.net